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Abstract—In this two-part paper, a design methodology for
hardware reduction in digital delta-sigma modulators (DDSMs)
based on bus-splitting and error masking is presented. Part I ad-
dresses Multi stAge noise SHaping (MASH) DDSMs with constant
inputs; Part II focuses on error feedback modulators (EFMs)
with time-varying inputs. In this paper, we address EFMs with
DC inputs plus additive input least significant bit (LSB) dithering
and show how hardware reduction can be achieved with minimal
degradation of the output spectrum. We also address EFMs with
sinusoidal inputs and show how bus-splitting and error masking
techniques can be used to obtain a trade-off between the modu-
lator complexity and the achievable signal-to-noise ratio.

Index Terms—Bus-splitting, digital delta-sigma modulator
(DDSM), nesting.

I. INTRODUCTION

HIS is the second part of a two-part paper that presents

a design methodology for hardware reduction in digital
delta-sigma modulators (DDSMs) based on bus-splitting and
error masking. Part I of the paper considered Multi stAge noise
SHaping (MASH) DDSMs with constant inputs [1]. Such sys-
tems have applications in fractional-N frequency synthesizers
for generating fixed frequencies by modulating the instanta-
neous division ratio of a frequency divider. The design method-
ology in that case exploits knowledge of the positions of the
tones. Part II of the paper considers error feedback modulators
(EFMs) with time-varying inputs. The positions of the tones in
the DDSM’s output spectrum are typically unknown when the
input is time-varying. In this case, the design methodology ex-
ploits knowledge of the shape of the noise floor.

In this work, we consider two different types of inputs. The
first input we discuss consists of two components, namely a con-
stant value and a pseudorandom 1-bit LSB dither signal [2]. In
the fractional-N frequency synthesizer application, the presence
of spurious tones in any part of the spectrum is highly objection-
able as any nonlinearity in the implementation of the phase-fre-
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Fig. 1. Block diagram of a typical oversampling delta-sigma DAC.

quency detector, charge pump, filter, VCO or divider can cause
out-of-band tones to fold back into the baseband, thereby in-
creasing the phase noise in the vicinity of the carrier [3], [4].
Therefore, it is crucial that the quantization noise introduced by
the DDSM is white and independent of the modulator’s input
because strong correlations between the modulator input and
quantization noise can lead to spurious tones in the output spec-
trum of the DDSM. The use of stochastic LSB dithering can im-
part these properties to the quantization noise, in certain cases,
at the expense of a degradation in the phase noise of the PLL
output [5]-[7]. Alternatively, a number of deterministic strate-
gies have been proposed for minimizing spurious tones [8], [9].

The second type of input we consider is a digitized sinusoid
because DDSMs are widely used in oversampling digital-to-
analog converters (DACs) [10]. Fig. 1 shows a high level block
diagram of a typical delta-sigma DAC, consisting of a digital
interpolation filter, a DDSM, a DAC and an analog filter with a
lowpass response [11]. The input digital signal, sampled at the
Nyquist rate, is upsampled using a digital interpolator and the
resulting bit sequence is passed to a DDSM which reduces the
word length of the binary code. The output signal of the DDSM
is converted to an analog signal in the DAC block and finally
the analog output is low pass filtered to remove the out-of-band
quantization noise.

The design of a DDSM for use in an oversampling DAC in-
volves anumber oftrade-offs. Nonlinearity in the DAC can cause
increased signal distortion at the output. The main advantage of
one-bit DDSMs is the inherent linearity of the corresponding
one-bit DAC. These modulators are not suitable for high speed
data conversion because a large oversampling ratio (OSR) is
required to achieve high resolution when the signal bandwidth
of interest becomes large [12]. A large OSR restricts the circuit’s
bandwidth and increases its power dissipation. Once again, it
is crucial that the quantization noise introduced by the DDSM
is asymptotically white and independent of the modulator’s
input because strong correlations between the modulator input
and quantization noise can lead to spurious tones in the output
spectrum of the DDSM. In data converter applications, spu-
rious in-band tones are undesirable because they degrade the
signal-to-noise ratio (SNR). In the case of one-bit modulators,
the white noise approximation is generally not valid [11].
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The use of a multibit DDSM reduces the OSR required to
achieve a specific resolution. Multibit modulators produce
fewer spurious tones and lower out-of-band quantization noise;
this relaxes the analog post filtering requirements [13]. The
main drawback of a multibit DDSM is the nonlinearity of
the corresponding multibit DAC. This necessitates the use of
linearization techniques such as dynamic element matching
(DEM) to mitigate the consequences of the nonlinearity and
to ensure that mismatches among the DAC elements do not
corrupt the desired signal [14], [15]. In this paper, we focus on
multibit digital delta-sigma modulation with sinusoidal inputs.

In order to ensure high performance, it is necessary to use
high order modulators to obtain significant noise shaping in the
signal band. High order DDSMs can be realized with interpola-
tive or MASH architectures [11]. An nth order interpolative ar-
chitecture typically incorporates a single quantizer and a single
nth order discrete-time filter. For n > 1, interpolative modula-
tors employing a one-bit quantizer require signal conditioning
around the loop for stability control, which reduces the avail-
able dynamic range at the input. Applying a full-scale input to
a high-order single bit DDSM causes the quantizer to be over-
loaded frequently, leading to severe distortion at the DDSM’s
output. The use of a multibit quantizer increases the achievable
dynamic range for a higher order modulator by ensuring its sta-
bility over a larger input range [12]. In this work, we focus on
the error feedback modulator architecture which is the simplest
implementation of a delta-sigma modulator for a digital appli-
cation. Prior work [16] has shown that this architecture does not
experience quantizer overload if a kth-order FIR noise transfer
function (NTF) is used in conjunction with a (k + 1)-bit trun-
cator.

In this work, we investigate a bus-splitting idea for imple-
menting DDSMs with non-constant inputs, in which the digital
input word to a high order DDSM is partitioned into a number
of parts and the LSBs are processed by one or more low order
DDSMs before being recombined with the MSBs. Our work has
been inspired by the ideas of Norsworthy ez al. [17] in which the
data path of a multibit digital noise shaper is reduced by noting
that noise shaping only needs to be performed on the lower few
LSBs of an oversampled digital signal in order to be effective.
The authors of [17] presented simulation results in which they
compared the performance of a traditional single-stage noise
shaper with their minimal multibit noise shaping architecture.
They truncated the lower 8 bits of a 16-bit sine wave and passed
the 8 LSBs through a second-order noise shaper before recom-
bining them with the 8 MSBs. This was shown to produce a sim-
ilar baseband noise floor to the traditional method of passing the
entire 16 bits through the second order noise shaper. Schreier
and Temes claim that “for sufficiently large OSR, the accuracy
can be satisfactory” [11].

To date, the performance of bus-splitting combined with dig-
ital delta-sigma modulation has been evaluated based on in-
sight, empirical observations and simulations. The goal of this
paper is to formalize the method. In the case of an oversampling
DAC, the wordlength of the modulator is typically defined by
the output SNR specification; the wordlength in turn determines
the power consumption and area. Reducing the wordlength usu-
ally degrades the SNR but also decreases the power consump-
tion and area. In this work, we consider the components that
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Fig.2. (a)Block diagram of an /th order error feedback modulator (EFM!) and
(b) its hardware implementation.

contribute to the output SNR of a DDSM and show how these
can be manipulated to reduce the overall complexity of the mod-
ulator with minimum degradation of the SNR. In particular,
spectral shaping and masking techniques can be used to reduce
the hardware requirements faster than the SNR; these can yield
a design that is roughly 40% more efficient in terms of power
and area.

This paper is organized as follows. In Section II, we review
the conventional EFM architecture. In Section III, we describe
bus-splitting EFM architectures. In Section IV, we compare the
conventional and bus-splitting dithered EFM architectures and
develop a design methodology which ensures that the spectral
performances of the bus-splitting architectures are comparable
to the conventional design. In Section V, we consider an EFM
with a sinusoidal input and explain how a trade-off between
SNR and hardware complexity can be achieved.

II. CONVENTIONAL EFM ARCHITECTURE

Fig. 2(a) shows the block diagram of an /th order error
feedback modulator (EFMI) with integer valued signals
x[n], v[n], y[n], and —e[n].

The input to the modulator is an /V-bit digital word. The trun-
cation quantizer in the EFM implements the following opera-

tion:
y[n] = L%J

where |z denotes the largest integer less than or equal to 2: and
M = 2% is the step size of the quantizer in the EFM. In the
Z-domain, we can write the output of the EFM Y (z) in terms of
the input X (z) and the quantization error E(z) as

)

Y (z) = STF(2)X(2) + NTF(2)E(z) )

where STF(z) and NTF(z) are the signal and noise transfer

functions, respectively. Assuming that the feedback filter is of
the form H(z) = 1 — (1 — 2~ 1)!, the output is given by

(€))
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Fig. 2(b) shows the hardware implementation of the EFMI.
The k-bit quantization is achieved by taking the & MSBs of v[n)].
The discarded LSBs, representing the negative of the quantiza-
tion error (—e[n]), are fed back and summed with the input. An
EFM is guaranteed to be free of quantizer overload provided
that a k-bit truncator is used in conjunction with a (£ — 1)th
order loop filter [16].

III. BUS-SPLITTING ARCHITECTURES

Fig. 3(a) shows the block diagram of a conventional N -bit
third-order error feedback modulator (EFM3). In this case, the
EFM3 processes the entire [V bits of the input. Consider the
architectures in Figs. 3(b) and (c), to which we will refer as a
bus-splitting 1-3 EFM3 and a bus-splitting 2-3 EFM3, respec-
tively. In these cases, the digital input word is divided into two
parts: the V;sp most significant bits and the Ny gp least signif-
icant bits. The /V-bit input can be written as

X = Xusp - 222 + X3 €]

where Xysp and Xpgp correspond to the MSBs and LSBs,
respectively, and

N = Nys + Niss. %)

Consider the bus-splitting architecture of Fig. 3(d), to which we
will refer as a nested bus-splitting 1-2-3 EFM3. In this case,
the digital input word is first divided into two parts: the Nyisp
most significant bits, and the remainder. The latter is then further
subdivided into the Nigg intermediate bits and the Ny sg least
significant bits. The /V-bit input can be written as

X = Xusg - 2JVLSR+JVISB + Xisp - 2NLSB + Xisp (6)

where Xysp, X1sp, and Xp,gp correspond to the most signifi-
cant, intermediate, and least significant bits, respectively, and

N = Nyvigg + Nigs + Nisp- 7

In the remainder of the paper, we will consider the merits
of the bus-splitting architectures in Figs. 3(b)—(d) compared to
the architecture in Fig. 3(a). We will show when and how they
can be used to achieve similar spectral performance but using
less area and power. First we consider a pseudorandom input
resulting from dither and then a sinusoidal input.

IV. DITHERED EFM

A. Conventional Dithered EFM

Fig. 4 shows a simplified block diagram of the dithered
third-order EFM (EFM3) that we consider in this work. In
this scheme, a 1-bit dither sequence, d, low-pass filtered by a
shaping filter V(z) = (1 — z 1), is added to the signal, s,
giving

r=s+uvxd (8)
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Fig. 3. Block diagrams of the conventional and bus-splitting EFM architec-
tures. (a) Conventional architecture, (b) Bus-splitting 1-3 EFM3, (c) Bus-split-
ting 2-3 EFM3, (d) Nested bus-splitting 1-2-3 EFM3.
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Fig. 4. Block diagram of a dithered EFM3.
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where denotes the convolution operator. It has been proven
that the EFM quantization noise is white, uniformly distributed
and independent of the DDSM inputif R < L—2, where L is the
order of the DDSM [6]; this ensures a spur-free output spectrum.
Consequently, in the case of third-order lowpass DDSMs, both
non-shaped (R = 0) and first-order shaped (R = 1) dither can
be used to suppress spurious tones.

The minimum cycle length of a dithered DDSM is usually
very large. Consequently, the tone spacing is typically very
small and the discrete output spectrum tends toward a contin-
uous spectrum. Assuming white quantization noise, the noise
at the output can be estimated using the traditional linear model
[18]

A2

L(f)= 0

|NTF(Z)|z:ej2ﬂf/fs )
where A is the quantization interval, NTF(z) is the noise
transfer function which shapes the quantization noise and f; is
the (uniform) sampling frequency.

B. Dithered Bus-Splitting DDSM

Consider the dithered bus-splitting architectures shown in
Figs. 5(a) and (b). We present the design methodology for the
dithered nested bus-splitting 1-2-3 EFM3 in detail and present
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Fig. 5. The dithered bus-splitting 1-3 EFM3 (a) and the dithered nested bus-
splitting 1-2-3 EFM3 (b). (a) Dithered bus-splitting 1-3 EFM3, (b) Dithered
nested bus-splitting 1-2-3 EFM3.

a design equation for the bus-splitting 1-3 EFM3. The output
of the nested bus-splitting 1-2-3 EFM3 can be written as [1]

X(2)
9N

Ylgg(z) = —|—N1(Z) +N2(Z)+JV3(Z) (10)
where N1(z) = (1 — 2 Yegup(z)/(2Nuse . 2NusetNisn ) g
the shaped contribution of the quantizer in EFM1, Ny(z) =
(1—2 1) 2%ega(z)/(2Nsn . 2Musp)) s the shaped contribution of
the quantizer in EFM2 and N3(z) = (1—2 )3 E 93(z) /25
is the shaped contribution from the quantizer in EFM3. Note
that e14(2), €g2(z) and Ei23(2) are the Z-transforms of the
quantization errors of the EFM1, EFM2 and EFM3 in the bus-
splitting 1-2-3 architecture, respectively. Using (9), the PSDs of
the filtered error signals N1, Ns, and V3 can be approximated
by

2
1 1 v 2
['l(f) - E . (2-ZVMSB+ANISB) |(1 -z )lz:ejzﬂf/f.;

(11)

L —i.Lzufl“. 12

Q(f) - 12 ZNMSB |( z ) |z:e.727ff/fs ( )
1 A

Lo(f) = I =27 Eerassr- (13)

C. Zeroth-Order Dither

In the case of a DDSM with zeroth-order LSB dithering and
a constant input, the low frequency noise floor is determined by
the dither signal. In the case of zeroth-order dither, the level of
the noise floor is [18]

2
»Cnfﬂ(f) = % (%)

and the largest frequency at which the PSD of the dithering
is larger than the contribution from the quantization noise of
EFM3 in the nested bus-splitting 1-2-3 EFM3 architecture, e123,
is given by

(14)

(15)
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Fig. 6. Masking (dashed-dotted) £, and (dashed) £: below (solid) £ at
fo. £1,L2, L3 and L,, s are defined by (11)—(13) and (14). In this example,
Nisg = 6,Nrgg = 7,and Nygs = 7.

Fig. 6 shows typical contributions L1, L2, L3, and L, s¢ for
a zeroth-order dithered nested bus-splitting 1-2-3 EFM3. The
corner frequency fy is defined by the intersection of £3 and
Lyro. As L4 and L, are first- and second-order shaped, respec-
tively, we require that

(16)
a7

L1(fo) < L3(fo)
Lo(fo) < Ls(fo)

in order to mask the quantization errors of the intermediate
EFMs below that of the dithering and the error from EFM3.

Assuming a sufficiently large oversampling rate, we can ap-
proximate L1, Lo, and L3 at low frequencies by

2 2

L)~ oo (ﬁ) . (?) o
2 4

[,z(f) ~ % : <2Niqsﬁ> .24 (7}_f> (19)
6

Lal) g 2 (7}1) | =

Substituting (18), (19), and (20) into the constraints (16) and
(17), we obtain

1 1 1\* 1 1\°
22Nusp+2Niss 12\ 2N/3 < 12\ 2N/3

(21
1 1 1 4 1 1 6
2Nuss 12 \283) S 12 \2v
(22)
which reduce to

2N

Nasp + Nisp > KN (23)
N

Nuss > 3 24)
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TABLE I
OPTIMIZED WORDLENGTHS FOR BUS-SPLITTING DDSM3 ARCHITECTURES

Bus-splitting DDSM Wordlengths
Nrsg | Nis | Nuss
(a) 1-3 N-M - M
(b)1-2-3 N-M M-L L

Based on (23) and (24), if the word length NV of the input is
known, the optimum wordlengths Ny s, Nigp, and Nysp of
the EFM1, EFM2, and EFM3 can be calculated from

N
Nuss = [?—‘ (25)
2N
Nisp = [ 3 -‘ — Nuss (26)
Nypsg = N — Nysp — Nisp. (27)

Note that, in contrast to the design methodology for the
ditherless DDSM [1], there is no cycle-length criterion to be
satisfied and the design methodology for the dithered EFM does
not require the wordlength of the first stage of the bus-splitting
DDSM architecture to be increased. A similar analysis can
be performed to determine the optimum wordlengths for the
bus-splitting 1-3 EFM3 with zeroth-order dither.

In order to design a bus-splitting EFM with a PSD which is
similar to that of a conventional Ny-bit EFM3 with zeroth-order
dither, the design procedure is as follows:

¢ Choose N = Nj.

* Choose the desired bus-splitting architecture and deter-

mine the optimized wordlengths from Table I using M =
[(2N)/(3)] and L = [(N/3)], as appropriate.

D. First-Order Dither

If first-order shaped dither is applied to the input of the EFM,
its noise floor is defined by

Lnpi(f)

1/ 1\ . )
=5 (21\"> [2sin(m £/ fs)] (28)

and the largest frequency at which the PSD of the dithering is
larger than the contribution from e;53 is given by

1 s
= m @
Fig. 7 shows typical contributions £, £3, and £,, 1 for a first-
order dithered nested bus-splitting 1-2-3 EFM3. The corner fre-
quency in this case, f1, is defined by the intersection of £3 and
Ly, r1. Note that we have not shown £, in Fig. 7. Since £; is
first-order shaped, we require that £; < L, f1, which can be
expressed as

1 1 9 o 1 1 5 5
15 N 2 WS F)" S Gpaw 2 (/1)

(30)
This in turn reduces to

Nyvs + Nisg > N. (1)
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Fig. 7. Masking (dashed) £ below (solid) £3 at f1. £, L3 and L., ;1 are
defined by (12), (13) and (28). In this example, Np.gg = 0, Nisg = 9, and
Nymeg = 11,

Since our objective is to minimize the overall hardware require-
ment, we choose Nyisg + Nisg = N. Recall that Nyisgp +
Nisg + Npsg = N by definition; hence Npgg = 0. Thus,
(31) implies that it is not necessary to use a first-order EFM to
shape the Npgp bits of the input word. In this case, the nested
bus-splitting 1-2-3 EFM3 in Fig. 3(d) reduces to the bus-split-
ting 2-3 EFM3 in Fig. 3(c).

Next, £2 needs to be masked by L3, as shown schematically
in Fig. 7. Thus, the word-length strategy for the DDSM2 re-
quires that

Lo(f1) < L3(f1) (32)

This can be expressed as

1 1 1\ 1 1 \¢ 33
221"\’YMSB ’ E ’ 21\‘72 < ﬁ ’ 2]\7/2 ( )

which gives

N
Nuyse > —.

: (34)

In order to design a bus-splitting 2-3 EFM3 with a PSD similar
to that of a conventional Ny-bit EFM3 with first-order dither,
the design procedure is as follows:

¢ Choose N = Nj.

« Choose Nysp = [N/2].

¢ Choose ]VISB =N — IVMSB.

E. Design Examples

In this subsection, we present a design example for a ze-
roth-order dithered 20-bit EFM3. Applying design equations
(25)—(27), the appropriate wordlengths for the nested bus-split-
ting 1-2-3 EFM3 are Nysp = 7, Nisgp = 7, and Npgp = 6. A
7-7-6-bit nested bus-splitting 1-2-3 EFM3 is simulated to show
typical contributions N7, N5, and N3 (see Figs. 8-10)1.

A Hanning window with 22° output samples was used when computing the
spectra in this section based on the periodogram method described in [19].



FITZGIBBON et al.: HARDWARE REDUCTION IN DIGITAL DELTA-SIGMA MODULATORS

Power/frequency bin (dB/sample)

—18 ‘ > ZZ,..i 3 |
8 1072 10

Normalized Frequency (xr rad/sample)

10

Fig. 8. Simulated PSD for Ny when Nysg = 7, Nysg = 7, and Nr.gp = 6;
the input is 104857. The smooth curve is £ (11).
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Fig. 9. Simulated PSD for o when Nygp = 7, Ny = 7, and Npgp = G;
the input is 104857. The smooth curve is £2 (12).
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Flg 10. Simulated PSD for JV;; when ]\TMSR = 7’, i\‘—]SR = T’, and ]\’vLSR = 6;
the input is 104857. The smooth curve is £3 (13).

Note that, in the case of Fig. 8, the simulated N1 curve is
not well approximated by the theoretical £, curve at high fre-
quencies. This is not surprising given the fact that it has been
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Fig. 11. Simulated PSD at the output of a zeroth-order dithered 20-bit EFM3;
the input is 104857. The smooth curves are L3 (13) and £, s (14).
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Fig. 12. Simulated PSD at the output of a zeroth-order dithered 7-7-6-bit nested
bus-splitting 1-2-3 EFM3; the input is 104857. The smooth curves are £3 (13)
and L"nj() (14)

established that LSB dither cannot make the quantization noise
in a first-order DDSM white [5]. In the case of non-white quan-
tization noise, the exact shape of the DDSM output spectrum is
difficult to predict. To the best of the authors’ knowledge, this
problem has not been addressed satisfactorily in the literature.
In any case, there is good matching at low frequencies which
is the most important region for the design methodology, given
that the contribution at high frequencies is masked by the higher
order shaped terms.

The simulated PSD for a conventional zeroth-order dithered
20-bit EFM3 is shown in Fig. 11. The PSD of the 7-7-6-bit
nested bus-splitting 1-2-3 EFM3 is shown in Fig. 12. Note that
the N7 and No components lie below the spectral envelope of
N3 above fj and are therefore masked by it, as expected. Con-
sequently, N1 and N5 do not affect the overall performance of
the nested bus-splitting 1-2-3 EFM3.

The hardware requirements for (i) a conventional 20-bit
EFM3 and (ii) the 14-6-bit 1-3 EFM3 and 7-7-6-bit 1-2-3
EFM3 architectures with zeroth-order dither are summarized
in Table II. Note that the hardware of the dither block has been
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TABLE 11
HARDWARE AND POWER CONSUMPTION OF A CONVENTIONAL 20-BiT EFM3
AND THE BUS-SPLITTING EFM ARCHITECTURES USING SYNOPSYS DESIGN
COMPILER AND PRIMETIME [20]

EFM area power | slack
(pm?) | (W) | (ns)
(a) 20-bit EFM3 13882 [ 162.7 | 6.78
(b) 14-6-bit 1-3 EFM3 10832 | 12577 | 7.36
((b)/ (@))% 78 77 108
(c) 7-7-6-bit 1-2-3 EFM3 | 885.6 98 7.36
((c)/(a))% 64 60 108
(d) 11-9-bit 2-3 EFM3 11581 | 1244 | 723
((d)/(a))% 83 76 107

50

=50

-10G

-15Q

Power/frequency bin (dB/sample)

-20Q°"}

. S : L :
10” 10° 10° 10" 10
Normalized Frequency (xr rad/sample)

Fig. 13. Simulated PSD at the output of a first-order dithered 20-bit EFM3; the
input is 3277. The smooth curves are £3 (13) and £,, 1 (28).
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-15G¢

Power/frequency bin (dB/sample)

—20G™

—25C ZZI"'II II'IIi‘i y .I
10

Normalized Frequency (xr rad/sample)

Fig. 14. Simulated PSD at the output of a first-order dithered 11-9-bit bus-
splitting 2-3 EFM3; the input is 3277. The smooth curves are £3 (13)and £, £1
(28).

excluded in order to allow a direct comparison of the relative
hardware consumption (RHC) of the nested architectures.

The simulated PSD for a conventional 20-bit EFM3 with first-
order shaped additive input dither is shown in Fig. 13. Applying
the design equation (34), the wordlengths of the bus-splitting
2-3 EFM3 are Nyigsp = 11 and Nigg = 9. The simulated PSD
for the 11-9-bit bus-splitting 2-3 EFM3 is shown in Fig. 14. As
expected, the bus-splitting EFM3 achieves an almost identical
PSD compared to the conventional 20-bit EFM3.
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The hardware requirements for the bus-splitting 2-3 EFM3 ar-
chitecture with first-order dither are also summarized in Table II.
Note that the nested bus-splitting 7-7-6-bit 1-2-3 EFM3 requires
36% less area and 40% less power than the equivalent 20-bit
EFM3. Note also that the 14-6-bit bus splitting 1-3 EFM3 con-
sumes more power than the 11-9-bit bus-splitting 2-3 EFM3
while consuming less area, indicating a higher level of switching
activity in the bus-splitting 1-3 EFM3 architecture. The slack
value is higher for the 14-6-bit bus-splitting 1-3 EFM3, sug-
gesting that a portion of its extra power is being used to allow
higher operation speed.

V. DDSM WITH SINUSOIDAL INPUT

In this section, we will discuss the merits of bus-splitting in
the case of sinusoidal inputs. Using the concept of error masking
[18], we have developed a design methodology which rigor-
ously quantifies the effects of the various parameters on the ef-
fective-number of bits (ENOB) at the output for bus-splitting
DDSMs with sinusoidal inputs.

A. Oversampled Quantized Sinusoid

Consider a signal z with bandwidth fz that is sampled at a
frequency fs and then quantized using an NV -bit quantizer with a
quantization step A. Assuming a full-scale sinusoidal input, the
powers of the signal and quantization noise in the signal band
of interest are given by [21]

A 2Ny?
Psin - % (35)
AQ
Fo= 15708 (36)

respectively, where the oversampling ratio is defined by OSR =
(fs)/(2fB). The SNR is defined by

Fin
SNR = ];—Q (37)
Substituting (35) and (36) into (37) gives
SNR = 22V (%) OSR. (38)
The corresponding SNR in dB is given by
SNRyp = 6.02N + 1.76 + 3.01 log, OSR. (39)
The ENOB is defined by
ENOB — SNRd.B — 1.76. (40)
6.02
Substituting (39) into (40) gives
ENOB = N + 0.51og, OSR. (41)

B. Oversampled Quantized Sinusoid Applied to an EFM Alone

Next, consider a signal = with bandwidth fp that is sampled
at a frequency fs and then quantized using an N -bit quantizer
with a quantization step A, to produce an output . Assume
that the signal x g is applied to an /th order EFM with additive
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white quantization noise e and NTF(z) = (1 — z 1)!. The
output of the EFM can be written in the z-domain as
1

Y(2) = = Xp(2) + (1 — 2 D E(2)

= 42
21\’ 2 ( )

In this case, the total power of the in-band quantization noise is
given by [11]

2 Iz 1 —32xf/faN\21 2
Grms = / 22N (1 —e’ (e Crms df
J0

. ~ 43
© 12 (20 + 1)OSRHH? (53)

where we have assumed that e?_, = A(ZQ /12. Note that the step

size of the quantizer in the {th order EFM is given by A = 27V,
Typically, STF(z) is an all-pass filter or a delay. Consequently,
the SNR at the output of the EFM! is given by

A

SNR =

2
8

A2 1 72!

22N .12.0SR + 12 \ 211

_ 22N (%) OSR
- 27 T 21
1+ (%) (55w)

where we have assumed that A = 1 which corresponds to the
least significant bit of a digital implementation. Comparing (38)
and (44), the degradation in the SNR caused by passing the
quantized signal through an /th order low-pass EFM is given

by

(44)

ASNR 1 i T\
—10log;q [ 1 EUER
as = 10log1o ( + <2z+1> (OSR) ) (45)

In the case of a DDSM with a quantized sinusoidal input, the
level of the noise floor in the output PSD at low frequencies is
determined by the number of bits of the sinusoid. The output
also contains a component due to the quantization noise of the
DDSM. This is illustrated in Fig. 15 which shows the output
PSD of a conventional EFM3 with OSR = 32, fg = 20 kHz
and N = 16. Note that, in this case, the simulated ENOB value
obtained using the technique described in [22] with a Hanning
window of 220 terms is 13.94, and is dominated by the rising
quantization noise introduced by the EFM3 beginning at ap-
proximately 5 kHz

In order to maximize the ENOB while simultaneously min-
imising the OSR required for a given value of NV and fg, one
must determine the corner frequency, fi, at which the PSD of
the noise floor and shaped quantization noise intersect. This can
be calculated as

1 ) 1

Assuming
sin(mfo/fo) = nfo/fs for fo K fs (47)

this gives
Jo L E (48)

1987

PSD [dB]

Frequency [Hz]

Fig. 15. PSD of the output of the conventional EFM3 with OSR = 32, f,; =
20 kHz and N = 16. The simulated ENOB = 13.94. The theoretical
ENOB = 13.96. The solid curves show the contributions of the quantized
sinusoid and EFM3 given by (14) and (20), respectively.

PSD [dB]

10’ 10° 10° 10" 10° 10°
Frequency [Hz]

Fig. 16. PSD of the output of the conventional EFM3 with OSR =
128, fp = 20 kHz and N = 16. The simulated ENOB = 19.54. The
theoretical ENOB = 19.41. The solid curves show the contributions of the
quantized sinusoid and EFM3 given by (14) and (20), respectively.

Setting fo = fp yields

OSR = 2/ (49)
Using (49) with N = 16 and [ = 3 yields a minimum value of
OSR =~ 127. Fig. 16 which shows the output PSD of a conven-
tional EFM3 with OSR = 128, fg = 20 kHzand N = 16. In
this case, the simulated ENOB is 19.54.

C. Oversampled Quantized Sinusoid With Bus-Splitting Alone

We consider again a signal = with bandwidth fz that has been
sampled at frequency f; and quantized by an NN-bit quantizer,
producing an output z: . This time, the N -bit word z: 5 is split so
that the lower Npgp bits are first applied to an {th order DDSM,
as shown in Fig. 17. The output of this DDSM is combined with
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zpln] |

Fig. 17. A quantized input signal  ; is split such that the lower N|,5); bits are
applied to an {th-order DDSM before being recombined with the upper Nysp
bits.

PSD [dB]

Frequency [Hz]

Fig. 18. PSD of a full-scale sinusoid with 20 kHz bandwidth quantized to 16
bits with Q.S ? = 64 using the scheme of Fig. 17 with Nyigp = 8 and NLsy =
8§ forthe case! = 1. The simulated ENOD = 15.92. The theoretical ENOD =
16.14. The solid curves show the contributions of the quantized sinusoid and
EFMI1, respectively.

the upper Nyigp bits to form an Nygp-bit word. Using (44), we
can write the SNR of yp as

22V (12) OSR

SNR. = (50)
2N 5 . 21
1+ (%) (%)
Comparing (50) with (38), if
22N1sR T 21
<2z+1> (OSR) <1 D

then the bus-splitting DDSM does not significantly degrade the
SNR.

This idea is illustrated graphically in Figs. 18 and 19, which
show the simulated PSDs of a 16-bit full-scale sinusoid with 20
kHz bandwidth using the scheme of Fig. 17 for two different
cases; (a)l = 1l and (b) ! = 2.

The digital word is split such that the lower 8 bits are ap-
plied to a low-order EFM and the output is combined with the
upper 8-bits. The simulated ENOB values for cases (a) and
(b) are 15.92 and 19.07, respectively. Note, using (41), that
ENOB = 19.0 for the original quantized sinusoid. Depending
on the choice of [ and the partitioning of the input word, a re-
duction in the wordlength of the sinusoid can be achieved with
or without significantly degrading the quality of the output. For
the above parameters, using { = 1 results in a reduction in the
ENOB by 3 bits but the reduction is negligible when [ = 2.
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PSD [dB]

Frequency [Hz]

Fig. 19. PSD of a full-scale sinusoid with 20 kHz bandwidth quantized to 16
bits with OSRR = 64 using the scheme of Fig. 17 with Nysp = 8 and N gy =
8 forthe case! = 2. The simulated ENOB = 19.07. The theoretical ENODB =
18.96. The solid curves show the contributions of the quantized sinusoid and
EFM2, respectively.

D. Oversampled Quantized Sinusoid Applied to a Bus-Splitting
EFM

We can estimate the SNRs at the outputs of the bus-splitting
EFM architectures in Figs. 3(b)—(d) and compare them with the
conventional case in Fig. 3(a). The SNR at the output of the
conventional EFM3 is

A2
SNR; = — 8
3 Ng +Ns

where Ny and A3 are the quantization noise terms associated
with the sinusoid and EFM3; these are defined by

(52)

2
1 1 !
No = 12 <2NMSB+NLSB> OSR >
and
1t
oL 54
* T 1270SR7 -

respectively. The SNR at the output of the bus-splitting 1-3
EFM3 shown in Fig. 3(b) is

A
SNRyy=——8 55
BTAM AN+ NS (53)
where
2 2
1 1 T
M= (2NMSB> 308R? 0

and NV and V3 are defined by (53) and (54). The reduction in
the SNR is defined by ASNR;3 = SNR3 — SNR;3. On a log
scale,

No + N+ Ny
ASNR. =10log | —————F+— ). 57
13 dB 08 ( No + N3 (57)
The corresponding reduction in ENOB is defined by
10 No+ Ni+ N3
AENOB 3 = —— _—
3= 502 ° ( No+ Ny
10 N

=—1 1+ —— 58
6.02 Og( +N0+N3) (58)
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The SNR at the output of a nested bus-splitting 1-2-3 EFM3
is

SNRy3 = Nyt N, j_NQ + N3 (59)

where 2
No = 11_2 (2-NMSB+I\}ISB+‘NLSB> OéR o

2
N = 11—2 <2NMssl+NISB) 3OWSR3 ©h

2 4

Ny = 11—2 (2]\’11513) 507;R‘5 )
Ny = 11_2% )

The reduction in the SNR is defined by ASNR 1935 = SNR3 —
SNR;23. On a log scale,

No+ N1+ No+ N
ASNRmdB:mlog( 2 3). (64)

No + N3
The corresponding reduction in ENOB is defined by

10 N+ N
AENOBo3 = —— log (14 22722 (65
123 7 602 Og( T N+ N (6)

E. Design Methodology

Using the hardware estimation technique presented in [1], we
can estimate the RHC of the of the bus-splitting 1-3 EFM3 as

18 Npsn + 72Nnvsi + 120

RHC;3 ~
13 72N + 20

x 100%.

(66)

By adjusting the wordlengths Nvisp and Npsp, we can keep
AENOB;3 less than a prescribed value using (58) while min-
imising the required hardware using (66). We present a design
example for a conventional 16-bit EFM3 with OSR = 128.
Using (58), a specification of AENODB;3 < 0.5 corresponds to

M
— < 1.
N0+N3_1

Substituting (53), (54), and (56) into (67) and solving to min-
imise (66) yields Nyisg = 10 and Npgp = 6. The PSDs of
the conventional 16-bit EFM3 and 10-6-bit bus-splitting 1-3
EFM3 are shown in Figs. 15 and 20, respectively. The predicted
AENODB; 3 using (58) is 0.39; the simulated AENOD; 3 is 0.48.

(67)

The RHC of the nested bus-splitting 1-2-3 EFM3 can be es-
timated as
18 N1sp + 36 N1gp + 72Nvisp + 134
72N + 20

RH0123 ~ x 100%.

(68)

Adjusting the wordlengths Nyisg, Nisp and Npsp, we can keep
AENODB; 23 less than a prescribed value using (65) while min-
imising the required hardware using (68). Using (65), a specifi-
cation of AENOB753 < 0.5 corresponds to

N+ Ny <1

No+ N3 — (69)

1989

PSD [dB]

10° 10* 10° 10
Frequency [Hz]

Fig. 20. PSD of the output of the bus-splitting 1-3 EFM3 with OSR =
128, Nyisg = 10 and N1.gg = 6. The simulated ENOB = 19.06. The
theoretical ENOB = 19.02. The solid curves show the contributions of
the quantized sinusoid, EFM1 and EFM3 given by (14), (18), and (20),
respectively.

PSD [dB]

Frequency [Hz]

Fig.21. PSD ofthe output of the nested bus-splitting 1-2-3 EFM3 with OSR. =
128, Nusp = 5. Nigg = 6 and N gy = 3. The simulated ENOB = 19.22.
The theoretical ENOB = 19.14. The solid curves show the contributions of
the quantized sinusoid, EFM1, EFM2 and EFM3 given by (14), (18), (19) and
(20), respectively.

Substituting (60)—(63) into (69) and solving to minimise (68)
yields Nuyss = 5, Nigsg = 6 and Npsg = 5. The PSD of the
output of the 5-6-5-bit nested bus-splitting 1-2-3 EFM3 with
OSR. = 128 is shown in Fig. 21. The predicted AENOD 24
using (65) is 0.27; the simulated AENODB 53 is 0.32.

The hardware requirements for (i) a conventional 16-bit
EFM3 (Fig. 3(a)) and (ii) the bus-splitting EFM architectures
(Figs. 3(b), (d)) are summarized in Table III. Note that the
nested bus-splitting 1-2-3 EFM3 requires 39% less area and
49% less power than the conventional solution.

VI. CONCLUSION

In Part I, we considered a DDSM with a constant input.
Such systems have applications in fractional-N frequency syn-
thesizers for generating fixed frequencies. The error masking
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TABLE III
HARDWARE AND POWER CONSUMPTION OF THE CONVENTIONAL 16-BIT EFM3
AND THE BUS-SPLITTING EFM ARCHITECTURES USING SYNOPSYS DESIGN
COMPILER AND PRIMETIME [20]

EFM area power | slack

(pm?) | W) | (ns)

(a) 16-bit EFM3 11102 | 1295 7.17

(b) 10-6-bit 1-3 EFM3 805.3 85.5 774
((b)/(a)% 72.5 66 107.9

(c) 5-6-5-bit 1-2-3 EFM3 | 685.8 66.6 7.74
((©)/(a)% 61.7 514 107.9

strategies described in Part I exploit knowledge of the positions
of the tones in the undithered case when the input is constant.

In many applications, such as oversampled DACs and syn-
thesizers with in-loop modulation, the input to the DDSM is not
constant. In Part II, we have assumed that the input is varying.
In this case, the error masking strategy to be adopted exploits
knowledge of the shape of the noise floor since the positions
of individual tones are typically unknown. Savings in area and
power of approximately 40% are possible with minimal degra-
dation of the spectral performance of the modulator.
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