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Abstract—This brief presents a pseudorandom number gener-
ator that requires very low resources from the hardware design
point of view. It is based on a chain of digital accumulators
whose coefficients are varied by an auxiliary low-complexity linear
feedback shift register. We present a predictability and periodicity
analysis of the sequences generated by the proposed architecture
to show that the system is a good candidate to be used for applica-
tions requiring high-quality pseudorandom sequences in portable
devices. The statistical behavior of the proposed solution is also
validated by tests from the National Institute of Standards and
Technology. The generated pseudorandom sequences pass all tests
at both the level-one and level-two approaches.

Index Terms—Pseudorandom number generator (PRNG),
statistical tests, time variant.

I. INTRODUCTION

AN EFFECTIVE generation of pseudorandom sequences
has positive consequences on many types of application.

To name a few, the increasing need of security in cryptography
applications makes it necessary to design complex systems
that generate deterministic sequences with statistical features
as close as possible to a random process [1] and a built-in self-
test of digital circuits that uses groups of digital sequences with
random characteristics.

Opposed to true-random number generators [2] that are
based on some intrinsically random natural phenomenon,
pseudorandom number generators (PRNGs) [3], [4] are numer-
ical algorithms that, starting from an externally (and possibly
randomly) chosen seed, can produce long irregular randomlike
sequences, which are nevertheless periodic and fully repeatable.
This repeatability property makes them fundamental in many
applications such as cryptography.

Independently of the employed methodology, hardware gen-
eration of pseudorandom numbers is becoming increasingly
difficult due to tight constraints in terms of power and area
consumption, which modern devices require, particularly in the
field of portable and consumer applications.
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In a PRNG, the periodicity, the predictability, and, more
generally, all its statistical features are important characteris-
tics [5]. For instance, in cryptographic applications, the pre-
dictability is important as an attacker may be capable to get
information observing the PRNG output, so that the system
security is threatened because the seed of the PRNG (which
is related to the cryptographic key [3]) can be exposed. The
use of cumbersome algorithms (such as the Blum-Blum-Shub
[4]) ensures system security, but the cost is extremely high in
terms of resources required. Simpler algorithms (such as the
Mersenne-Twister [6]) can achieve a very high quality random
stream, but they may not be cryptographically secure.

This brief proposes a low-resources architecture that is
capable of generating pseudorandom sequences with very
good statistical features. Along with the system architecture,
which exploits a digital Σ∆ modulator with quantization error
mapping function variable within time and is based on a
self-recursive structure, we present a basic predictability and
periodicity analysis. With this, despite the fact that a formal
cryptographic security analysis is beyond the scope of this brief,
we show that, notwithstanding the simplicity of the architec-
ture, the proposed PRNG is not easily predictable, and it is a
good candidate for embedding in portable applications.

This brief is organized as follows. Section II presents the
architecture and the notation used to study the evolution of
the system. Section III describes statistical analysis of the
PRNG (including predictability and periodicity of the generated
sequences) and estimates the lower bound of the computa-
tional power required to predict the evolution of the system.
Section III-C validates this PRNG with the statistical tests of
the National Institute of Standards and Technology (NIST) [7].
The results refer to the level-one testing approach and also to
the level-two testing both with the proportion of sequences
and the χ2 approaches. Finally, in Section IV, we discuss
some implementation aspects, and in Section V, we draw the
conclusion.

II. PROPOSED PRNG

Digital accumulators are widely used in digital processors,
digital Σ∆ modulators for fractional frequency synthesizers
[8], [9], digital-to-analog converters [10], etc. Let us consider
the block level model of the modulus M digital accumulator
shown in Fig. 1, where X is the (constant) input, p0 (the
accumulator sum) is the state variable of the system, and the
two outputs are e0 (the sum modulus M , which is also called
quantization error) and y0 (the carry output, which is set when
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Fig. 1. Block-level model for the modulus M digital accumulator.

Fig. 2. Block-level model for the modulus M digital accumulator with time-
variant coefficient.

the accumulator overloads, i.e., when the sum is bigger than or
equal to M ). Mathematically, indicating with i the time step,
we have

p0[i] =X + e0[i − 1]

y0[i] =
{

0 p0[i] < M
1 p0[i] ≥ M

e0[i] = p0[i] − My0[i] = p0[i] (mod M). (1)

Under the condition that X and M are relatively prime [11],
[12], the quantization error e0 becomes uniformly distributed
on the range of its M possible values. However, in the general
case, the system may regrettably generate even very short
periodic sequences, which are composed only by a few among
all possible values.

Many methods have been proposed to improve the statistical
properties of the e0 sequence for a generic input. We consider
here the method first proposed in [9], which consists of varying
the accumulator’s feedback coefficients with time, as shown
in Fig. 2. The quantization error e0 is scaled by a coefficient
c � 1, multiplied by a binary variable d ∈ {0, 1} generated
by a simple congruential PRNG based on a linear feedback
shift register (LFSR) [13] and then fed back to the input. The
scaling by the c coefficient can be achieved with a digital Σ∆
modulator, i.e., by another accumulator like that in Fig. 1, which
takes e0 as input, and whose output y1 replaces the signal c e0

in the feedback path. The implementation of this architecture
on a m bit digital hardware (i.e., assuming M = 2m) is shown
in Fig. 3, and it is very simple since only two m-bit adders are
required along with a simple congruential auxiliary PRNG. The
multiplication between y1 and d is simply obtained with a one-
bit AND gate, and the result is used as the carry input of the first
accumulator. The scaling coefficient is c = 1/M = 2−m. In this
architecture, the e0 sequence has good statistical properties for
all the possible values of X [9].

In this brief, we propose to use a chain of n time-varied
accumulators to generate a pseudorandom stream. The pro-
posed topology is a modular system identical to a multistage
Σ∆ converter, where the input of the generic stage k is the
quantization error ek−1 of the previous stage, whereas the carry

Fig. 3. Implementation of the time-variant coefficient accumulator of Fig. 2
with M = 2m.

Fig. 4. Architecture of the proposed PRNG.

output yk is used in the previous stage for the generation of
the time variant coefficient, as previously described. Note that
an additional stage is required to generate the signal yn used
in the stage n − 1. For the proposed architecture, whose block
diagram is shown in Fig. 4, the evolution is regulated by

pk[i] =




X + e0[i − 1] + y1[i − 1]d0[i], k = 0
ek−1[i] + ek[i − 1] + yk+1[i − 1]dk[i], 0 < k < n
en−1[i] + en[i − 1], k = n

yk[i] =
{

0 pk[i] < M
1 pk[i] ≥ M

ek[i] = pk[i] − Myk[i] = pk[i] (mod M). (2)

Note that the presence of an auxiliary PRNG is mandatory.
We will show in the following that the output sequence en−1

has the characteristic of a very good pseudorandom sequence.
The seed of this PRNG can be considered as the input signal X ,
along with the initial states of all the accumulators and the seed
of the LFSR auxiliary PRNG. Note that, along with the high
quality and the simple and recurrent architecture, another one of
the advantages of the proposed architecture is to rely on a digital
Sigma-Delta modulator [9], [10] architecture. This means that,
considering an environment where resources are very limited,
we could design an accumulator chain that can work as a digital
Σ∆ converter and also as a high-security PRNG when required.

The system we propose is composed of nine stages (i.e.,
n = 8) with m = 8 bits resolution, where e7 is the system
output. The auxiliary PRNG is a maximum-length LFSR com-
posed of eight stages, which is the minimum number of stages
to simultaneously generate the d0 . . . d7 values required. The
choice of these parameters has been made since they are a good
tradeoff between system performance and complexity.
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III. PROPOSED PRNG STATISTICAL FEATURES

In this section, we analyze a few aspects related to the
statistical properties of the proposed PRNG and show that,
despite its simplicity, the statistical features are comparable
with those achieved with much more complex architectures.
We first propose a brief study on the PRNG predictability
and periodicity, where, in both cases, we start from the case
of the simple chain of accumulators, i.e., considering dk = 0,
∀k. Then, we consider how the system is changed by the
introduction of the time-varying coefficients as in (2). Finally,
we provide statistical test results for sequences generated by the
PRNG. The results were obtained using, at both level one and
level two, the SP800-22 test suite provided by the NIST [7].

A. Predictability of the PRNG

Assuming dk = 0, we get a system that is actually linear in
modular arithmetic, and its evolution can be easily predicted
by means of a limited number of observations. In fact, if we
define with

i(k) = i(i + 1)(i + 2) . . . (i + k − 1) (3)

the Pochhammer symbol for a rising sequential product and we
indicate with ēk the initial condition of the kth accumulator,
i.e., ek[0] = ēk, we can unroll the recursive evolution equation
(2) and write the evolution of the generic kth stage as

ek[i] =
i(k+1)

(k + 1)!
X +

k∑
l=0

i(l)

l!
ēk−l (mod M) (4)

i.e., we get that the output sequence ek out of accumulator k is
completely determined by the constant input X and the initial
conditions of all the accumulators down to the first one, i.e.,
ēk, ēk−1, . . . , ē0.

Let us assume a PRNG based on an n stages architec-
ture and indicate with Xn its seed, i.e., the vector Xn =
(X, ē0, . . . , ēn−1)′. Predicting the evolution of the PRNG
means finding Xn by observing en−1, i.e., the output of the
system.

By collectingn+1observations en−1[0], en−1[1], . . . , en−1[n],
we can write the system




en−1[0]
en−1[1]

. . .
en−1[n]


 = AnXn (mod M) (5)

where An is an (n + 1) × (n + 1) matrix with integer coef-
ficients, which depends only on n. Equation (5) is a system
of n + 1 linear equations in n + 1 unknowns with integer
coefficients in modular arithmetic. The solution of this system
is generally not trivial [14], [15] and not strictly related with
the solution of the associated system in R

n+1 [i.e., system (5)
considered in R

n+1, instead of in modulo M arithmetic], which
is Xn = A−1

n (en−1[0], . . . , en−1[n])′. However, the aforemen-
tioned system has the interesting property that A−1

n is an integer

matrix1 i.e., Xn is also integer. In this case, the solution Xn of
the modular problem is simply the congruential vector of Xn.
In conclusion, using the simple chain of accumulators as PRNG
makes the system easily predicable.

When considering the system in Fig. 4, we are changing the
true nature of the system, which is not linear anymore, since
the terms yk are a nonlinear functions of the pk. Despite the
fact that the aim of this section is not to define an algorithm
for determining the seed of our PRNG from observations, we
can compute, given the solution of (5), a lower bound for the
computational power required for predicting the evolution the
system of Fig. 4.

Let us unroll the recursive equation (2), i.e.,

ek[i] =
i(k+1)

(k + 1)!
X +

k∑
l=0

i(l)

l!
ēk−l

+
k∑

l=0

i∑
s=1

s(l)

l!
yk−l+1[i−s]dk−l[i−s+1] (mod M)

(6)

and let us collect, as in the previous case, the n + 1 observations
en−1[0], en−1[1], . . . , en−1[n]. This leads to the system




en−1[0]
en−1[1]

. . .
en−1[n]


 = AnXn + BnY n (mod M) (7)

where Bn is an (n + 1) × n2 coefficients matrix and where

Y n =




y1[0]d0[1]
...

yn[0]dn−1[1]
y1[1]d0[2]

...
yn[1]dn−1[2]

...
yn[n − 1]dn−1[n]




(8)

is an n2 length vector, which is a nonlinear function of Xn. Due
to this nonlinearity, system (7) may not have a single solution.

One easy way to solve the impasse of finding the seed Xn

is to assume to know a priori all the yk+1[i − 1]dk[i] products,
i.e., to assume that Y n is a constant vector. In this way, system
(7) can be solved exactly as system (5). Note that, since we have
2n2

different Y n’s, we also have up to 2n2
different solutions

Xn. The actual seed of the system has to be chosen among the
Xn that are coherent with the assumed Y n.

Note that refining this choice up to a single coherent Xn

may require some additional observations. Note also that this
approach gives only partial information on ēn and on the
auxiliary PRNG internal state.

The lower bound complexity for this approach is the same
as solving (and checking for coherence) 2n2

linear systems.
Therefore, neglecting the auxiliary PRNG, a brute-force attack

1This property was checked using Mathematica for n up to 150.



GONZALEZ-DIAZ et al.: PRNG BASED ON TIME-VARIANT RECURSION OF ACCUMULATORS 583

[16] on the system would try 2(n+1)m possible Xn seeds.
When the number of stages n is comparable with the number of
bits m in each accumulator, the prediction of the system from
the observed values has almost the same complexity as a brute-
force attack.

B. Periodicity of the Proposed PRNG

For the sake of simplicity, let us start, as in the previous case,
by making some considerations on the basic chain of accumula-
tors. The periodicity of the system is defined as the smallest time
step I >0 for which ek[i+I]=ek[i] or, equivalently, ek[I]= ēk,
∀k. By using (4), we can compute I by solving the system



IX = 0 (mod M)
I(2)

2! X + Iē0 = 0 (mod M)
. . .
I(n)

n! X +
∑n−1

l=1
I(l)

l! ēn−l−1 = 0 (mod M) (9)

which is a nonlinear system in I .
Let us neglect the obvious case where X = ēk = 0, which

generates a constant output. It is known in the literature [12]
that, if M is a prime number, then the system periodicity is
I = M . Otherwise, I depends on all system parameters, i.e.,
X , M , and n, and also on all ēk. In the worst case, i.e., when
we get the shortest period, I is the smallest common divisor
between M and X , i.e., conditions exist for which I = 2.

Without entering into the mathematical details, when the
time-varying coefficients are introduced in the feedback path
as in Fig. 4, the periodicity of the system has to be computed by
solving the system ek[I] = ēk, ∀k, where ek[I] are computed
through (6). Furthermore, we have also to ensure that yk[I] =
yk[0] and that the state of the auxiliary PRNG at time step I
matches the initial one.

It is easy to see that computing the exact value of I is at least
as difficult as to predict the evolution of the system. However,
due to the condition on the auxiliary PRNG, we know that I
has to be an integer multiple of the periodicity of the auxiliary
PRNG, i.e., we have a lower bound for I , which is independent
on the seed. Therefore, the periodic behavior can be improved
with the auxiliary LFSR.

Note, however, that this periodicity lower bound is usually
a strong underestimation of the actual period. As an example,
with the proposed parameters (n = 8, m = 8, and an eight-
stage LFSR), we have a lower bound equal to 28 − 1 = 255,
but we were not able to observe any periodic behavior in many
simulations with several millions time steps.

C. Statistical Tests Results

In this section, we propose some statistical test results for the
proposed architecture with n = 8, m = 8, and an 8-bit LSFR.
We have tested many generated pseudorandom streams with the
suite SP800-22 [7], which is a collection of tests developed by
the NIST and is the suite most commonly used in the evaluation
of RNG and PRNG for cryptographic applications. We used
this suite since, in recent years, it has been recognized as the
standard de facto for random generators testing; furthermore
due to uniformity of the tests in the suite, it is possible to apply

TABLE I
RESULTS OF THE RANDOMNESS NIST TESTS FOR THE PROPOSED PRNG.

THE FIRST COLUMN IS FOR THE STANDARD APPROACH; THE SECOND

ONE IS FOR A LEVEL-TWO APPROACH BASED ON THE PROPORTION

OF SEQUENCES PASSING A STANDARD TEST; THE THIRD COLUMN

IS FOR A LEVEL-TWO APPROACH BASED ON A CHI-SQUARE

TEST. ALL RESULTS ARE IN THE EXPECTED RANGE

the so-called level-two (or second level) testing approach, which
has been shown to be much more selective in exposing weak
generators [17].

SP800-22 test results are shown in Table I, where we have
adopted all three approaches proposed by NIST. The first
column is the result of a standard test, where we have generated
a single sequence and processed it with all the tests in the suite.
The test result is a p-value, which is a number in [0, 1], which
should be larger than a level of significance α for considering a
test passed. The value suggest by NIST is α = 0.01. According
to the table results, p > α for all tests, which can be considered
passed.

The second and third columns are the result for level-two
approaches. In the second column, we have generated 1000
different sequences from different initial conditions, and we
have checked the proportion of sequences, where p > α. This
number should lie in the confidence interval 0.99 ± 0.0094.
For all tests, the ratio of sequences passing the test is in the
confidence interval. In the third column, we have taken the same
1000 sequences as above, and we have tested the uniformity
of their p-values with a chi-square goodness-of-fit test. The
results is a level-two p-value pT , which has to be larger than
a significance level αT . For all tests, pT > 0.01, i.e., this level-
two test is also passed.

Note that, when increasing the complexity of the PRNG by
considering a higher number of stages, the statistical tests are
passed with similar results. Similarly, increasing the complexity
of the auxiliary LFSR (note that, in this example, we have
considered an eight-stage LFSR, which is the minimum length
for which we can change the required coefficients since n = 8),
we obtain similar results. This means that the auxiliary PRNG
does not influence the statistical properties of the random-
generated stream.

Since we have also shown that the auxiliary PRNG has little
influence on the predictability of the system while having a
very strong influence on its periodicity, we suggest choosing
the auxiliary PRNG with the only aim of maximizing the
periodicity of the generated sequences. For this reason, the best
choice is a maximum-length LFSR.
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TABLE II
COMPARISON BETWEEN THE NUMBER OF RESOURCES OCCUPIED BY THE PROPOSED GENERATOR

AND SOME LOW-RESOURCE IMPLEMENTATIONS OF THE MERSENNE-TWISTER PRNG

IV. HARDWARE IMPLEMENTATION

The proposed architecture, which is composed of nine ac-
cumulators with 8 bits of resolution and an auxiliary 8-bit
LFSR, has been synthesized with automatic layout generation
tools. In the synthesis obtained by Cadence Silicon Ensemble
in a CMOS 0.35-µm process, a total of 474 digital cells are
required with an area of 280 µm × 280 µm. This is a very
small amount of digital cells for high-quality PRNG implemen-
tation. We have also implemented the proposed architecture
on a Virtex-4 field-programmable gate array (FPGA) using
Xilinx ISE Web Pack 13.1. The number of slices required is
only 57, with no additional random-access memory (RAM)
requirements. These resources have been compared in Table II
with some implementations of the Mersenne-Twister gener-
ator on common FPGA platforms [18]–[20], which require
128–420 FPGA slices, depending on the area/timing optimiza-
tion, and some additional RAM blocks. The proposed archi-
tecture has clear advantages in terms of resources required
and speed.

Note that the lack of a RAM requirement is a twofold
advantage since the RAM is usually the bottleneck for both
the FPGA speed and resource allocation. The implementation
of the Mersenne-Twister without the RAM blocks [19] will
costs 5815 slices; this payload in terms of area would re-
sult in a significant reduction in the FPGA clock maximum
speed.

V. CONCLUSION

We have proposed a new low-complexity PRNG based on a
chain of digital accumulators with feedback coefficients. The
feedback coefficients are changed within time with the help
of a low-complexity LFSR. With this system, the congruent
relationships that rule the evolution of a chain of accumulators
have been transformed in a nonlinear mapping that increments
the periodicity of the output sequence. Moreover, predicting
the evolution of the system in general requires almost the
same computational power of a brute-force attack. Sequences
obtained from the proposed architecture have similar statistical
properties of PRNGs used even for cryptographic applications;
it passes all NIST statistical tests at the level two, both with the
proportion of sequences and the χ2 approaches.
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