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Abstract—A nested digital delta-sigma modulator (DDSM)
architecture for fractional-N frequency synthesis is investigated
and compared with the conventional MASH 1-1-1 DDSM. In the
nested architecture, the LSBs of the input word are processed by
a first-order DDSM and added to the MSBs before being pro-
cessed by a third-order DDSM. Using the error masking design
methodology [1], rules for selecting the optimum wordlengths are
presented. We show that the nested architecture requires 15%
fewer flip-flops and 13% fewer full-adders than the conventional
architecture, resulting in an overall hardware saving of 15%.
Simulation results confirm the analytical predictions.

I. INTRODUCTION

Digital delta-sigma modulators (DDSMs) are key compo-
nents in a wide range of modern communications products
employing frequency synthesizers such as cellular telephones,
wireless LANs and modems. In comparison with integer-N
phase-locked loops (PLLs), fractional-N PLLs based on digital
∆Σ modulators can achieve very fine frequency resolution
without the need for using low reference frequencies. The
unfavorable trade-off between bandwidth and frequency reso-
lution associated with integer-N PLLs is avoided at the expense
of additional phase noise [2].

Figure 1 shows a block diagram of a typical ∆Σ fractional-
N PLL consisting of a phase-frequency detector (PFD), a
charge pump (CP), a low pass filter (LPF), a voltage controlled
oscillator (VCO), a frequency divider, and a DDSM [3]. The
input to the DDSM is an N-bit digital word X which sets
the desired fractional division ratio X

2N
. The DDSM output is

an integer-valued sequence y[n], which is used to modulate
the instantaneous division ratio of a frequency divider such
that an average division ratio of N + X

2N
is obtained over

time. The quantization noise produced by the DDSM is high-
pass shaped and subsequently removed by the PLL loop filter,
thereby ensuring that the phase noise in the vicinity of the
carrier is small.

Higher order DDSMs are typically employed in fractional-N
PLLs in an effort to minimise the effect of the spurious tones
(spurs) which usually are present in the DDSM output spec-
trum. Higher order DDSMs can be realized using interpolative
or cascaded architectures. The design of single-loop high-order
modulators can be problematic due to stability concerns [1].
Multi stAge noise SHaping (MASH) DDSMs, on the other
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Fig. 1. Block diagram of a typical fractional-N PLL

hand, utilize a cascade of lower order modulators and are
unconditionally stable.

Previous work in the area of D/A conversion has identified
architectures in which the hardware complexity of the DAC
can be reduced without sacrificing performance [4], [5]. This
is achieved by using a DDSM to shape the LSBs of the input
signal, thereby reducing the bit width of the DAC data path.
In this work, we investigate this idea from the point of view
of DDSMs to determine if similar hardware savings can be
achieved. We address the MASH 1-1-1 DDSM which is a
popular structure that offers full coverage of the fractional
input range [6]. We investigate a novel architecture, the nested
1-3 DDSM, in which the input digital word is partitioned and
applied to two different DDSMs. We compare the hardware
complexity of the conventional MASH 1-1-1 DDSM and the
nested 1-3 DDSM and show that the latter requires less area.

II. CONVENTIONAL MASH 1-1-1 DDSM ARCHITECTURE

Before we describe the nested architecture, we first review
the conventional MASH 1-1-1 DDSM. This structure is based
on the digital accumulator model shown in Fig. 2. The input to
the accumulator is a digital word with N bits. The quantizer
block Q(·) simply passes the MSB of v[n] to the output y[n]
and the discarded LSBs are then fed back and summed with
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Fig. 2. Block diagram of a first-order error feedback modulator (EFM1)
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Fig. 3. Signal-flow graph of EFM1

the input. Mathematically, we can write

y[n] =

{
0, v[n] < 2N ,
1, v[n] ≥ 2N .

(1)

In the Z-domain, we can write the output, Y (z), in terms of
X(z) and E(z) as follows:

Y (z) =
X(z)

2N
+

(1− z−1)E(z)

2N
. (2)

This structure is referred to as a first-order error feedback
modulator (EFM1). The signal flow graph of the EFM1 is
shown in Fig. 3 [7]. Note that the implementation of an N-bit
accumulator requires N flip-flops and N full-adders.

A MASH 1-1-1 DDSM is comprised of a cascade of three
EFM1 blocks and a noise cancellation network, as shown in
Fig. 4. In this structure, the negative of the quantization error
from each stage (−ei[n]) is fed to the next stage and the output
of each stage (yi[n]) is fed to the noise cancellation network,
which eliminates the intermediate quantization noise terms.
The output of the MASH 1-1-1 DDSM can be expressed in
the Z-domain as:

Y (z) =
X(z)

2N
+

(1− z−1)3E3(z)

2N
, (3)

where X(z) and E3(z) are the Z-transforms of the input and
the quantizer error introduced by the third stage. It can be
shown [8] that a two’s complement implementation of the
noise cancellation network requires 4 flip-flops and 12 full-
adders. The number of flip-flops and full-adders required to
implement a conventional N-bit MASH 1-1-1 DDSM can
therefore be written as

nFA,conv = 3N + 12 (4)
nFF,conv = 3N + 4 (5)
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Fig. 4. Block diagram of a MASH 1-1-1 DDSM

III. NESTED ARCHITECTURE

A nested DDSM [4] divides the N bits of the input into
multiple segments. Consider the architecture of Fig. 5, which
we will refer to as a nested 1-3 DDSM. In this scheme, the
input word is divided into 2 parts; the NMSB most significant
bits XMSB , and the NLSB least significant bits XLSB . The
N-bit input can be written as

X = XMSB · 2NLSB +XLSB , (6)

where
N = NMSB +NLSB (7)

XLSB is applied to a first-order DDSM (DDSM1) which
produces a single bit output i.e. either 0 or 1. At the output
of the DDSM1, we can write

Y1(z) =
XLSB(z)

2NLSB
+

(1− z−1)εQ(z)

2NLSB
, (8)

where εQ(z) is the Z-transform of the quantization error of
the DDSM1. This bit is then added to XMSB giving

X3(z) = XMSB(z) +
XLSB(z)

2NLSB
+

(1− z−1)εQ(z)

2NLSB
.

Note that this addition does not require the explicit implemen-
tation of an extra adder. It can be implemented by applying the
output of the DDSM1 to the carry input of the first accumulator
of the DDSM3. Using this method, it is possible to add the two
signals without increasing the hardware cost. At the output of
the DDSM3, we have

Y3(z) =
XMSB(z)

2NMSB
+

XLSB(z)

2NLSB · 2NMSB

+
(1− z−1)εQ(z)

2NLSB · 2NMSB
+

(1− z−1)3E3(z)

2NMSB
, (9)

which, after simplification, yields

Y3(z) =
X(z)

2N
+

(1− z−1)εQ(z)

2NLSB · 2NMSB
+

(1− z−1)3E3(z)

2NMSB
. (10)

Note that in comparison with Eq. (3), the output of the nested
1-3 DDSM contains an additional shaped noise term which
is scaled by a factor 1/2NMSB . The number of flip-flops and
full-adders required to implement the nested 1-3 DDSM is
given by

nFA,nested = NLSB + 3NMSB + 12 (11)
nFF,nested = NLSB + 3NMSB + 4 (12)
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Fig. 5. Block diagram of the nested 1-3 DDSM

IV. DESIGN METHODOLOGY

The DDSM quantization noise power is spread over a
number of tones that is determined by the cycle length,
resulting in a tone spacing of ∆f = fs/Ls, where fs is the
sampling frequency and Ls is the cycle length. The locations
of these tones are given by

f [k] = k∆f, k = 1, 2, · · · , Ls
2

(13)

where k is the index of the tone [1]. Assuming a cycle of
length Ls and additive uniformly distributed white quantiza-
tion noise, the idealized power spectrum of the shaped noise
NTF (z) · εQ is given by

S(f [k]) =
1

12Ls
|NTF (z)|2z=ej2πk/Ls . (14)

Throughout this paper, we will use the power spectrum Si
that is obtained by assuming that the quantization noise Ei
is white, to estimate the power spectrum of the actual shaped
quantization noise component Ni. The output of the nested
1-3 DDSM can be written as

Y3(z) =
X(z)

2N
+

N1(z)

2NMSB
+N3(z), (15)

where N1(z) = (1−z−1)εQ/2
NLSB is the shaped contribution

of the quantizer in the first order DDSM and N3(z) =
(1− z−1)3E3(z)/2NMSB is the shaped contribution from the
quantizer in the third order DSDM.

Assuming that all quantization noise terms can be modeled
as independent additive white sources and considering the
weighting factor, we estimate the power spectrum of N1(z)
as

S1(f [k]) =
1

12L1

(
1

2NMSB

)2 ∣∣(1− z−1)
∣∣2
z=ej2πk/L1

, (16)

where L1 is the cycle length of the error signal from the first
order DDSM. By setting the least significant bit (LSB) of the
input to 1, L1 is equal to 2NLSB [10]. In the same manner, by
assuming a white error source E3(z), we estimate the power
spectrum of N3(z) as

S3(f [k]) =
1

12Ls

∣∣(1− z−1)3
∣∣2
z=ej2πk/Ls

, (17)

where Ls is the cycle length which is 2NMSB+NLSB . The idea
of the wordlength selection strategy is to mask the contribution
of the intermediate quantizer by hiding the noise component
N1 below the N3 component. The spectral envelope S1 due
to the first order DDSM should lie below the S3 envelope.

Since both are discrete spectra, the constraints apply at a finite
number of points. In particular, we require that:

S1 ≤ S3 @ f = fs · k/L1, k = 1, 2, ..., L1/2 (18)

Recall that, for a DDSM with an output cycle length of Ls,
the lowest frequency tone is at fs/Ls. Therefore, since the
cycle length for N1 is 2NLSB , the lowest frequency tone in
the power spectrum of N1 is at fs/2NLSB .

Additionally, at the output of the nested 1-3 DDSM, since
S1 is first-order shaped, while S3 is third-order shaped, if the
level of the lowest frequency tone in N1 is below that of
N3, the overall power of N1 should always be below the S3

envelope. Based on this idea, the constraint can be rewritten
as:

S1 ≤ S3 @ f = fs/2
NLSB . (19)

Since ∣∣1− z−1
∣∣2 =

∣∣∣1− e−j2πf/fs∣∣∣2
= |2 sin(πf/fs)|2 (20)

and
sin(πf/fs) ≈ πf/fs for f << fs, (21)

we can approximate S1 and S3 at low frequencies by

S1 ≈ 1

12L1
·
(

1

2NMSB

)2

· 22(πf/fs)
2, (22)

S3 ≈ 1

12L3
· 26(πf/fs)

6. (23)

Substituting Eqs. (22)−(23) into (19), we obtain

1

22NMSB
· 1

12 · 2NLSB
· 22 · π2

(2NLSB )2

≤ 1

12 · 2NLSB+NMSB

26π6

(2NLSB )6
(24)

which reduces to

4NLSB −NMSB ≤ 10.6. (25)

If we define N = NMSB + NLSB and M = NMSB , then
substituting into and simplifying Eq. (25) yields

M ≥ 0.8N − 2.12. (26)

If the wordlength N of the input is known, M can be cal-
culated from (26). Therefore, the optimized values of NMSB

and NLSB can be calculated using

NMSB = M, (27)
NLSB = N −M. (28)

Based on Eqs. (26)–(28), in order to design a nested 1-3
DDSM with the same cycle length and similar power spectrum
as a conventional N0-bit MASH 1-1-1 DDSM, the design
procedure is as follows:

1) Choose N = N0 + 1 to ensure that the cycle lengths of
the conventional and nested 1-3 DDSM are equal;
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Fig. 6. Simulated discrete output power spectrum for a conventional 19-bit
MASH 1-1-1 DDSM; the input is 157287. The smooth curve is S3 (17).

TABLE I
HARDWARE CONSUMPTION OF THE CONVENTIONAL 19-BIT MASH 1-1-1

DDSM AND THE NESTED 1-3 DDSM WITH NMSB=14 AND NLSB=6

MASH DDSM Hardware Consumption
FFs LUTs TEGs

(a) Conventional 19-bit 61 69 1229
(b) 14-6 bit 1-3 nested 52 60 1049

((b)/(a))% 85% 87% 85%

2) Choose M = d0.8N − 2.12e, where dxe denotes the
smallest integer greater than x. This ensures that the
power of the first tone of N1 is less than S3 at the
frequency fs/2NLSB ;

3) Choose NMSB and NLSB using (27) and (28).

V. DESIGN EXAMPLE

We present a design example for a 19-bit MASH 1-1-1
DDSM in order to verify the design methodology. The required
wordlengths given by Eqs. (26)–(28) are NMSB = 14 and
NLSB = 6. The inputs are chosen as the odd numbers that
set the normalized input as close as possible to the value
0.3; X = 157287 in the case of the conventional DDSM
and X = 314573 in the case of the nested 1-3 DDSM. The
output discrete power spectra of the conventional and nested
1-3 DDSM are shown in Figs. 6 and 7, respectively.

The hardware requirements for the conventional 19-bit
MASH 1-1-1 DDSM and the nested 1-3 DDSM are summa-
rized in Table I. The hardware consumption is reported as the
number of flip-flops (FFs) and number of 4-input look-up-
tables (LUTs). The total-equivalent-gate (TEG) count is given
as well. These results are based on the map report from the
Xilinx ISE program [11]. In terms of overall complexity, the
14-6 bit 1-3 nested DDSM requires 15% less hardware than the
conventional 19-bit MASH 1-1-1 DDSM and has marginally
better spectral performance.

VI. CONCLUSION

In this work, we have presented a novel architecture for
reducing the hardware complexity of MASH DDSMs. Using
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Fig. 7. Simulated discrete ouput power spectrum for a 14-6 bit nested 1-3
MASH DDSM; the input is 314573. The smooth curve is S3 (17).

a design methodology based on error masking [1], we have
shown how to determine the optimum wordlengths for each
stage of the nested 1-3 DDSM, which allows a reduction in the
hardware complexity by 15%, without degrading the spectral
performance.
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