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Abstract—A trench Phase-Change Memory (PCM) cell with
MOSFET selector and its integration in a 4-Mb experimental chip
fabricated in 0.18- m CMOS technology are presented. A cascode
bitline biasing scheme allows read and write voltages to be fed to
the addressed storage elements with the required accuracy. The
high-performance capabilities of PCM cells were experimentally
investigated. A read access time of 45 ns was measured together
with a write throughput of 5 MB/s, which represents an improved
performance as compared to NOR Flash memories. Programmed
cell current distributions on the 4-Mb array demonstrate an ad-
equate working window and, together with first endurance mea-
surements, assess the feasibility of PCMs in standard CMOS tech-
nology with few additional process modules.

Index Terms—Cascode bitline biasing, nonvolatile memories,
Phase-Change Memories, sense amplifier.

I. INTRODUCTION

TODAY, high-performance portable equipment demand
nonvolatile memories featuring higher and higher

read/write speed and endurance. In recent years, more and
more research efforts have been devoted to finding a new
technology able to overcome performance and scalability limits
of currently dominant Flash memories. Phase-Change Memory
(PCM) technology [1]–[4] is one of the most promising candi-
dates for the next generation of nonvolatile memory devices. In
fact, PCMs have the capability of improved write throughput
versus NOR-based Flash memories and shorter random access
time versus NAND-based Flash memories, together with high
endurance, fabrication process simplicity, good compatibility
with standard CMOS processes, and the potential to be scaled
beyond Flash technology limits. A further key advantage is
very fine write granularity, as any cell can be independently
reprogrammed with no need for block erasing.
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Fig. 1. Detail of the PCM array configuration using an MOS device as a cell
selector (WL = wordline; BL = bitline).

This paper presents a 4-Mb PCM experimental chip devel-
oped in a 0.18- m CMOS process to demonstrate the feasi-
bility of a PCM device fabricated by using standard CMOS tech-
nology with a limited number of additional process modules. As
shown in Fig. 1, the cell selector is implemented by an -channel
MOSFET. Even though a pnp Bipolar Junction Transistor (BJT)
can also be employed [4]–[6] to obtain a smaller cell, the use of
an MOS device reduces the number of lithographic masks re-
quired, thus ensuring lower process cost. This choice also elim-
inates the problem of cumulative array leakage current due to
the reverse-biased base-to-emitter junction of unaddressed BJT
selectors. Furthermore, implementing the cell selector with the
same (NMOS) device type used in peripheral circuits provides
an easier vehicle for PCM technology development and charac-
terization.

The high-performance capabilities of PCM technology were
first investigated and assessed on single cells, showing very
fast programming together with adequate read margin. The
proposed chip was then integrated and experimentally evalu-
ated, thus allowing us to collect multimegabit cell distributions
and first statistical endurance data for technology performance
assessment.

This paper presents the trench PCM cell in Section II. The
architecture of the experimental chip is presented in Section III.
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Fig. 2. Schematic cross section of the PCM/MOS array (detail) along (a) the bitline and (b) the wordline directions.

Measurement results are provided in Section IV, and, finally,
conclusions are drawn in Section V.

II. PHASE-CHANGE STORAGE ELEMENT AND CELL ARRAY

In PCMs, also referred to as Ovonic Unified Memories
(OUMs), the storage device is made of a thin film of chalcogenide
alloy [in our case, Ge Sb Te (GST)]. This material can
reversiblychangebetweenanamorphousphase(highimpedance,
RESET state) and a polycrystalline phase (low impedance, SET
state) when thermally stimulated, thus allowing information
storage. Memory element programming is obtained by properly
heating (by means of electrical pulses applied to a suitable
heater element) and then cooling a small thermally isolated
portion of the chalcogenide material. Once the chalcogenide
alloy melts, it completely loses its crystalline structure. When
rapidly cooled, the chalcogenide material is locked into its
amorphous state (to this end, the cooling operation rate has to
be faster than the crystal growth rate). To switch the memory
element back to its crystalline state, the chalcogenide material is
heated to a temperature between its glass transition temperature
and its melting point temperature. This way, nucleation and
microcrystal growth occur in tens of nanoseconds, thus leading
to a (poly)crystalline state.

From the above, it follows that the storage element can be
modeled as a programmable resistor (high resistance logic
0; low resistance logic 1). Reading a cell basically consists
of measuring the resistance of the addressed storage device. To
this end, a predetermined voltage is forced across the storage
element of the selected cell, and the resulting current flow is
sensed. In practice, the cell current is compared to a trimmable
reference current, which, in our experimental chip, can also be
driven from an external pad for array characterization purposes.

A schematic cross section of a detail of the cell array
along one bitline (which is realized in the lowest metal level,
referred to as metal0) and along one wordline is depicted
in Fig. 2. To keep the programming current low while still
maintaining a compact vertical integration, the definition of
the contact area between the heater and the GST element is
achieved by the intersection of a thin vertical semimetallic

TABLE I
PARAMETERS OF THE USED CMOS TECHNOLOGY

heater and a trench in the heater-to-GST dielectric, referred to
as the “ trench”, in which the GST alloy is deposited [7]. The

trench approach allows defining the PCM active region as
the intersection of a sublitho feature and the deposited heater
thickness. The cell performance can thus be optimized by
tuning the heater-to-GST contact area while still maintaining
a good dimensional control. The heating element is connected
to the drain region of the MOSFET selector by means of
a tungsten plug, while the selector gate, which is split to
allow greater driving capability while minimizing cell area,
is connected to the metal2 wordline (not shown), which runs
orthogonally to the bitlines. The tungsten source line (SL)
is connected to a metal1 strap every 64 cells to minimize
the overall source line resistance.

The described trench architecture is fully compatible with
the use of an MOSFET selector. The PCM cell is integrated
by adding its basic process modules (i.e., tungsten precontact,
heater, and chalcogenide compound definition) between the
front-end and the back-end process blocks. A 0.18- m CMOS
process with 3-V transistors was chosen to integrate the PCM
cell in an experimental chip with the goal of proving the per-
formance and the full compatibility of PCM technology with a
standard CMOS fabrication process. The basic process archi-
tecture (Table I) relies on shallow trench isolation, dual-flavour
poly-gate with a gate oxide thickness of 7 nm, and three Al/Cu
metallizations (metal0 devoted to bitlines and two interconnect
levels, i.e., metal1 and metal2).

Fig. 3 shows a Scanning Electron Microscope (SEM) mi-
crophotograph of a detail of the array cross section along one
bitline. Although the trench architecture is very effective
to reduce the programming current and, correspondingly,
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Fig. 3. SEM cross section of the MOS array along the bitline direction.

TABLE II
READ/WRITE CURRENTS AND VOLTAGES FOR SELECTED (SEL) AND

UNSELECTED (NO SEL) CELLS

the MOSFET selector width, the cell size is still quite large
( m , which corresponds to approximately 40 F ). As
a consequence, this approach is not well suited to high-den-
sity stand-alone applications. However, the PCM cell can be
easily integrated with a minimum mask overhead (four addi-
tional masks in our case) into an advanced CMOS process.
This makes the proposed solution well suited to embedded
nonvolatile memory applications, as it ensures low cost and
reduced process complexity with respect to established non-
volatile memory technologies.

Table II summarizes read/write currents and voltages for se-
lected (Sel) and unselected (No Sel) cells, which are arranged
in the memory array as depicted in Fig. 1.

III. CHIP ARCHITECTURE

A schematic block diagram of the experimental chip is illus-
trated in Fig. 4. The memory is organized in a single 4-Mb array
(2048 rows 2048 columns). Transistors (which operate in
the saturation region) regulate the bitline voltage to 400 mV
during reading, so as to correctly sense the contents of the se-
lected cell without disturbing its storage element, and to 1.5 V
and 2.7 V during the SET and the RESET phase, respectively,
so as to obtain the required current through the selected cell in
both operations (Table II). The regulated read and program volt-
ages are fed to the gates of transistors by means of the Opera-
tion Control (OC) block. In this way, the bitline voltage turns out
to be equal to , where , , and
are the gate biasing voltage, the threshold voltage including the
body effect contribution, and the overdrive voltage of transistors

, respectively. Natural transistors with a threshold voltage
equal to 350 mV were chosen to implement devices in order
to demonstrate that the memory core can be accessed by using

voltages not higher than 3.5 V. In read mode, the adopted cas-
code bitline biasing approach [8] allows fast bitline precharge.
It should be pointed out that, during read operations, the bitline
voltage has to be adequately low, accurate, and stable in order
not to disturb the state of the addressed cell. In this respect, the
adopted bitline biasing technique prevents the risk of spurious
SET pulses since the cascode structure rejects disturbance in-
jection from the column decoder supply line, referred to as
in Fig. 4.

SET and RESET operations require accurate pulses to be
applied to the addressed bitlines and, hence, to the selected
cells. The pulsed, regulated bitline voltages required in SET
and RESET modes are obtained by simply applying suitable
voltages to the gates of transistors . This way, regulated
sources are not loaded by any dc current. Transistors
discharge all bitlines after any read and write operation (signal
DISCH high), so as to prevent spurious programming voltages
to be applied across unselected cells during next operations.

Programming requires voltages higher than the nominal
supply (1.8 V). For this reason, two charge pumps (referred
to as and in Fig. 4) were integrated. Charge pump
provides (through regulators) SET, RESET, read, and wordline
decoder supply voltages, referred to as , , ,
and , respectively. The other charge pump is devoted
to provide the programming power through the column selector
(in this respect, it is worth pointing out that the chosen cascode
bitline biasing approach allows the regulator to be designed
with relaxed specifications and reduced power consumption).
A voltage-tripler scheme [9] was used for both charge pumps.

was set to 3.3 V so as to correctly bias the column decoder
during both read and program operations.

The OC block provides the appropriate pulsed voltage levels
to the gate of natural transistors . These transistors do not im-
plement a selection level and, hence, one of such devices is as-
sociated with each bitline of the array. When a read or a program
operation is requested, the gates of all these natural transistors
(which are previously discharged so as to completely isolate all
memory cells during no-operation) must be raised to the read or
the program voltage. Hence, a large load capacitance has to be
charged by the corresponding voltage regulators.

In order to ensure fast recovery of the output voltage at the
beginning of any read operation, thus minimizing read access
time, the topology in Fig. 5 [10] has been used for the read
voltage regulator. This regulator consists of an input differential
stage , a level shifter , and an NMOS output source fol-
lower ( biased by the resistive network , ). The input
signal is 0.7 V. The supply voltage (5.2 V) is provided
by charge pump . The chosen regulator structure allows short
recovery time together with limited dc power consumption. In-
deed, a drop in the regulator output voltage results in an increase
of the gate-to-source voltage of transistor and, hence, of
the output current, thus speeding up output voltage recovery. In
addition, the feedback network also increases the gate voltage
of the NMOS output device, thus providing a further output cur-
rent contribution.

The above voltage regulator topology cannot provide ade-
quate swing at internal nodes when output voltages higher than
3 V are required. For this reason, conventional structures [11]
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Fig. 4. Block diagram of the experimental chip.

Fig. 5. Circuit diagram of the read voltage regulator (C : load capacitance, which is connected to the regulator output at time t ).

were adopted to regulate and as well as voltages
and , which have less severe requirements in terms of

fast recovery as compared to .
A fully symmetrical sense amplifier topology (Fig. 6)

[12]–[14] was developed to ensure zero systematic offset to-
gether with adequate rejection of disturbances due to capacitive
coupling with noisy substrate, power supply, and ground.
After bitline precharge and equalization (the corresponding
circuitry is not shown in the figure), the current differences

and are obtained (where
and are the addressed cell current and the reference

current, respectively). The current differences and are
integrated onto the parasitic capacitances of nodes matside

and refside . The resulting voltages are compared
by means of block , which produces a latched digital output
signal SAOUT. This signal is then fed to the output buffer and
the I/O pad.

IV. EXPERIMENTAL RESULTS

To exploit PCM technology for high-performance applica-
tions, short write and read times are mandatory, together with
adequate data retention capability. One of the main concerns
when speeding up writing operation is the trade-off between fast
crystallization and nonvolatility properties of the GST alloy. The
GST compound with stoichiometry 2-2-5 was thus employed as
a storage material. As previously reported [7], [15], memory el-
ements based on this chalcogenide alloy exhibit fast program-
ming times, 10-year data retention capability at 110 C, and en-
durance reaching programming cycles.

Fig. 7 shows the measured programming curves of an
MOSFET-selected PCM cell for several SET pulse widths. For
very long SET pulses (10 s), complete crystallization is easily
achieved, and a resistance difference of two orders of magni-
tude between the SET and RESET states is observed. However,
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Fig. 6. Circuit diagram of the sense amplifier.

Fig. 7. Programming curves of an MOSFET-selected PCM cell for different
SET pulse widths.

this programming time is unacceptable for high-performance
products. By reducing the pulse width, the GST alloy is not
able to fully crystallize, which results in a higher SET-state
resistance. Nevertheless, the characterization performed on
single cells (Fig. 7) shows that, for a SET pulse width as low
as 20 ns, a factor of 10 in the resistance change between the
RESET and SET states is achieved.

A RESET programming current as low as 600 A (see
Table II) is sufficient for our trench PCM device. It should be
pointed out that this value can be further reduced by suitably
tailoring the GST-to-heater contact area and the heater resis-
tance. Since the trench width scales with lithography, this
will allow a proportional reduction of power consumption in
next-generation devices. Optimization of heater material and
thickness provides further room for current reduction.

Fig. 8 illustrates the cell resistance in the amorphous state as a
function of the RESET pulse width. The three curves correspond
to different values of the voltage drops applied
across the memory element during RESET. The obtained resis-
tance values range from to . When the pulse dura-
tion is reduced to 10 ns, a small decrease in the programmed re-
sistance is observed. This effect is ascribed to a delay in reaching

Fig. 8. RESET-state resistance as a function of the programming pulse width
for different values of the voltage dropV across the storage element.

Fig. 9. Microphotograph of the experimental chip.

the thermal steady-state condition in the heated volume, mainly
due to the high thermal resistivity of the GST film. Even though
a suitable voltage window for read operations has been demon-
strated when using SET and RESET pulse widths as small as 20
and 10 ns (Figs. 7 and 8), respectively, consistently larger pulse
widths must be chosen to take cell parameter distribution and
reliability into account.

Fig. 9 shows a chip microphotograph of the 4-Mb ex-
perimental chip. Fig. 10 illustrates the measured voltage
waveforms when reading a SET cell ( wordline;

; chip enable, active low;
I/O pin; V). The read

access time is 45 ns.
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Fig. 10. Measured voltage waveforms when reading a SET cell (CE N ,WL,
and BL: active probes, attenuation by a factor of 10).

Fig. 11. Measured voltage waveforms during SET and RESET operations
(WL, BL: active probes, attenuation by a factor of 10).

Fig. 11 shows the measured voltage waveforms in consecu-
tive RESET and SET operations ( write enable, active
high; I/O pin; V). During the
RESET operation, the falling edge of the addressed wordline
voltage has to be very sharp so as to allow the melted GST
material to be rapidly cooled, thus correctly amorphizing the
cell. This operation, referred to as quenching, is carried out by
keeping the wordline fall time within a few nanoseconds (in our
case, 2 ns). For the measurement in Fig. 11, a relaxed RESET
pulse of 40 ns and a SET pulse of 150 ns were employed in order
to obtain adequately narrow cell distributions. In the proposed
experimental chip, a write parallelism of 8 was implemented.
The write throughput, which is determined by the 200-ns SET
time (SET pulse duration 50 ns due to circuitry delay), is
therefore 5 MB/s. The achieved write throughput represents a
strong improvement with respect to NOR Flash memory perfor-
mance. A write throughput of 10 MB/s can be easily achieved

Fig. 12. Read currents distributions of a 4-Mb array after SET and RESET
operations.

Fig. 13. Preliminary endurance measurements.

by increasing the write parallelism to 16, still with an acceptable
current drawn from power supply (30 mA, also taking the
efficiency of the charge pumps into account).

Several measurements were also successfully performed to
assess the whole chip functionality. Fig. 12 illustrates the cell
current distributions of the 4-Mb array after SET (150-ns pulses)
and RESET (40-ns pulses) operations. The achieved current
window is more than adequate for robust reading operation.

Preliminary results of endurance tests are illustrated in
Fig. 13. This figure shows the SET/RESET current window
evolution of the population of 10 samples, as a function of the
number of SET/RESET cycles. The figure shows both the mean
value and the values corresponding to a deviation of , ,

, and in the obtained read current distributions (the
mean value of the RESET-state read current is too low to be ap-
preciated in the figure). These preliminary results demonstrate
excellent endurance performance of PCM technology.

V. CONCLUSION

A 4-Mb PCM experimental chip using an MOS device as a
cell selector, integrated with 0.18- m CMOS technology, has
been presented. The high-performance capabilities of trench
PCM cells have been experimentally evaluated. A read access
time of 45 ns and a write throughput of 5 MB/s were measured,
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thus demonstrating improved performance as compared to
currently dominant NOR Flash memories. SET and RESET
cell characterization data, read current distributions and first
statistical measurements have been presented, assessing the
feasibility of PCM technology in standard CMOS fabrication
process.
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